Abstract
The article presents a new universal theory of dynamical chaos in nonlinear dissipative systems of differential equations, including autonomous and nonautonomous ordinary differential equations (ODE), partial differential equations, and delay differential equations. The theory relies on four remarkable results: Feigenbaum's period doubling theory for cycles of one-dimensional unimodal maps, Sharkovskii's theory of birth of cycles of arbitrary period up to cycle of period three in one-dimensional unimodal maps, Magnitskii's theory of rotor singular point in two-dimensional nonautonomous ODE systems, acting as a bridge between one-dimensional maps and differential equations, and Magnitskii's theory of homoclinic bifurcation cascade that follows the Sharkovskii cascade. All the theoretical propositions are rigorously proved and illustrated with numerous analytical examples and numerical computations, which are presented for all classical chaotic nonlinear dissipative systems of differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.