Abstract

Although a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW) species to high molecular weight (HMW) complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

Highlights

  • Because plants are sessile organisms, their growth, development, and survival are significantly affected by a variety of external stresses including cold, heat, water deficit, or drought, flooding, high salinity, and strong winds

  • The transcript levels of AtUSP in 10-day-old Arabidopsis seedlings gradually increased after oxidative stress and under heat shock conditions (Figure 1B), suggesting that AtUSP plays an important role in the defense system in plant tissues

  • The physiological significance of Universal Stress Proteins (USPs) has been wellstudied in many organisms, especially in E. coli, and expression of USPs is known to respond to various environmental stresses, including salt, drought, cold, heat, oxidative stress, nutrient starvation, and toxic chemicals (Guan and Nothnagel, 2004; Ndimba et al, 2005), the molecular mechanism of USP action has not been identified

Read more

Summary

Introduction

Because plants are sessile organisms, their growth, development, and survival are significantly affected by a variety of external stresses including cold, heat, water deficit, or drought, flooding, high salinity, and strong winds. These stresses can cause production of reactive oxygen species (ROS) containing hydrogen peroxide (H2O2), superoxide anion (·O−2 ), singlet oxygen (1O2) and hydroxyl radical (·OH) (Baier and Dietz, 2005; D’Autréaux and Toledano, 2007; Schwarzländer and Finkemeier, 2013). Depending upon the levels of ROS, many downstream signaling systems in cells, such as protein kinases, phosphatases, transcription factors, molecular chaperones, and defense-related proteins, may be activated. The USP genes are widely distributed across most living organisms, including bacteria, archaea, fungi, protozoa, plants, and mammals

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.