Abstract

Implant and blood-contacting biomaterials are challenged by biofouling and thrombus formation at their interface. Zwitterionic polymer brush coating can achieve excellent hemocompatibility, but the preparation often involves tedious, expensive, and complicated procedures that are designed for specific substrates. Here, we report a facile and universal strategy of creating zwitterionic polymer brushes on variety of materials by polydopamine (PDA)-assisted and surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization (PDA-SI-ARGET-ATRP). A PDA adhesive layer is first dipcoated on a substrate, followed by covalent immobilization of 3-trimethoxysilyl propyl 2-bromo-2-methylpropionate (SiBr, ATRP initiator) on the PDA via condensation. Meanwhile, the trimethoxysilyl group of SiBr also cross-links the PDA oligomers forming stabilized PDA/SiBr complex coating. Finally, SI-ARGET-ATRP is performed in a zwitterionic monomer solution catalyzed by the parts per million level of CuBr2 without deoxygenization. The conveniently fabricated zwitterionic polymer brush coatings are demonstrated to have stable, ultralow fouling, and extremely blood compatible and functionalizable characteristics. This facile, versatile, and universal surface modification strategy is expected to be widely applicable in various advanced biomaterials and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.