Abstract
We model repetitive quantum error correction (QEC) with the single-error-correcting five-qubit code on a network of individually controlled qubits with always-on Ising couplings. We use our previously designed universal set of quantum gates based on sequences of shaped decoupling pulses. In addition to being accurate quantum gates, the sequences also provide dynamical decoupling (DD) of low-frequency phase noise. The simulation involves integrating the unitary dynamics of six qubits over the duration of tens of thousands of control pulses, using classical stochastic phase noise as a source of decoherence. The combined DD and QEC protocol dramatically improves the coherence, with the QEC alone being responsible for more than an order of magnitude infidelity reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.