Abstract

We propose a scheme to generate metal–insulator transition in the random binary layer (RBL) model, which is constructed by randomly assigning two types of layers along the longitudinal direction. Based on a tight-binding Hamiltonian, the localization length is calculated for a variety of RBLs with different cross section geometries by using the transfer-matrix method. Both analytical and numerical results show that a band of extended states could appear in the quasi-one-dimensional RBLs and the systems behave as metals by properly tuning the model parameters, due to the existence of a completely ordered subband, leading to a metal–insulator transition in parameter space. Furthermore, the extended states are irrespective of the diagonal and off-diagonal disorder strengths. Our results can be generalized to two- and three-dimensional disordered systems with arbitrary layer structures, and may be realized in Bose–Einstein condensates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call