Abstract

Computational models for the transport properties of nanostructured thermoelectric materials predicted vast improvements in the thermoelectric power factor (PF) values over bulk due to discretization of the electron density-of-states function as the result of confinement. We have developed a model that bridges bulk and nanostructure PF data. The model is analyzed in the framework of the relaxation time approximation, considering different scattering mechanisms. The model shows that the PF of nanowires in fact falls below the bulk value for most of the experimentally-accessible size range. Under the constant relaxation time approximation, universal scaling relations are obtained for all single-carrier semiconductors.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call