Abstract
We show that, in the thermodynamic limit, a one-dimensional (1D) nonlinear lattice can always be thermalized for arbitrarily small nonlinearity, thus proving the equipartition theorem for a class of systems. Particularly, we find that in the lattices with nearest-neighbor interaction potential V(x)=x^{2}/2+λx^{n}/n with n≥4, the thermalization time, T_{eq}, follows a universal scaling law; i.e., T_{eq}∝λ^{-2}ε^{-(n-2)}, where ε is the energy per particle. Numerical simulations confirm that it is accurate for an even n, while a certain degree of deviation occurs for an odd n, which is attributed to the extra vibration modes excited by the asymmetric interaction potential. This finding suggests that although the symmetry of interactions will not affect the system reaching equipartition eventually, it affects the process toward equipartition. Based on the scaling law found here, a unified formula for the thermalization time of a 1D general nonlinear lattice is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.