Abstract
We study the spreading of information in a wide class of quantum systems, with variable-range interactions. We show that, after a quench, it generally features a double structure, whose scaling laws are related to a set of universal microscopic exponents that we determine. When the system supports excitations with a finite maximum velocity, the spreading shows a twofold ballistic behavior. While the correlation edge spreads with a velocity equal to twice the maximum group velocity, the dominant correlation maxima propagate with a different velocity that we derive. When the maximum group velocity diverges, as realizable with long-range interactions, the correlation edge features a slower-than-ballistic motion. The motion of the maxima is, instead, either faster-than-ballistic, for gapless systems, or ballistic, for gapped systems. The phenomenology that we unveil here provides a unified framework, which encompasses existing experimental observations with ultracold atoms and ions. It also paves the way to simple extensions of those experiments to observe the structures we describe in their full generality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.