Abstract

Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

Highlights

  • The Tree of Life is a synoptic depiction of the pathways of evolutionary differentiation between Earth life forms [1], and contains valuable clues on the key issue of understanding the diversification of life in the planet [2]

  • The branching pattern of the Tree of Life, which is being captured at increasing resolution by the advent of molecular tools [3], can be examined to investigate fundamental questions, such as whether it follows universal rules, and at what extent random differentiation mechanisms explain the shape of phylogenetic trees

  • We address these fundamental questions on the basis of a comprehensive comparative analysis of phylogenetic trees representing different fractions and domains of the Tree of Life, from interspecific to intraspecific scales

Read more

Summary

Introduction

The Tree of Life is a synoptic depiction of the pathways of evolutionary differentiation between Earth life forms [1], and contains valuable clues on the key issue of understanding the diversification of life in the planet [2]. The branching pattern of the Tree of Life, which is being captured at increasing resolution by the advent of molecular tools [3], can be examined to investigate fundamental questions, such as whether it follows universal rules, and at what extent random differentiation mechanisms explain the shape of phylogenetic trees. The examination of the structure of the Tree of Life can help to infer whether evolution acts at intraspecific scales in a way different from the action of evolution at the interspecific scale. We address these fundamental questions on the basis of a comprehensive comparative analysis of phylogenetic trees representing different fractions and domains of the Tree of Life, from interspecific to intraspecific scales. Our analysis is based on a thorough data set of more than 5000 interspecific phylogenies and a sample of 67 intraspecific phylogenies (see Text S1), thereby testing the universality of the results derived across scales

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.