Abstract

We study the time evolution of a conformal field theory deformed by a relevant operator under a smooth but fast quantum quench which brings it to the conformal point. We argue that when the quench time scale δt is small compared to the scale set by the relevant coupling, the expectation value of the quenched operator scales universally as δλ/δt(2Δ-d), where δλ is the quench amplitude. This growth is further enhanced by a logarithmic factor in even dimensions. We present explicit results for free scalar and fermionic field theories, supported by an analytic understanding of the leading contribution for fast quenches. Our results suggest that this scaling result, first found in holography, is in fact quite general. Our considerations also show that this limit of fast smooth quenches is quite different from an instantaneous quench from one time-independent Hamiltonian to another, where the state at the time of the quench serves as an initial condition for subsequent evolution with the final Hamiltonian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.