Abstract
We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of $\mu$, finite size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity related length scale. Finally, on going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an impurity at its endpoint as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of $\mu$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.