Abstract

We prove that general correlation functions of both ratios and products of characteristic polynomials of Hermitian random matrices are governed by integrable kernels of three different types: a) those constructed from orthogonal polynomials; b) constructed from Cauchy transforms of the same orthogonal polynomials and finally c) those constructed from both orthogonal polynomials and their Cauchy transforms. These kernels are related with the Riemann-Hilbert problem for orthogonal polynomials. For the correlation functions we obtain exact expressions in the form of determinants of these kernels. Derived representations enable us to study asymptotics of correlation functions of characteristic polynomials via Deift-Zhou steepest-descent/stationary phase method for Riemann-Hilbert problems, and in particular to find negative moments of characteristic polynomials. This reveals the universal parts of the correlation functions and moments of characteristic polynomials for arbitrary invariant ensemble of $\beta=2$ symmetry class.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.