Abstract

We examine the concept of universal quantized resistance in the AC regime through the fully coherent quantum RC circuit comprising a cavity (dot) capacitively coupled to a gate and connected via a single spin-polarized channel to a reservoir lead. As a result of quantum effects such as the Coulomb interaction in the cavity and global phase coherence, we show that the charge relaxation resistance $R_q$ is identical for weak and large transmissions and it changes from $h/2e^2$ to $h/e^2$ when the frequency (times $\hbar$) exceeds the level spacing of the cavity; $h$ is the Planck constant and $e$ the electron charge. For large cavities, we formulate a correspondence between the charge relaxation resistance $h/e^2$ and the Korringa-Shiba relation of the Kondo model. Furthermore, we introduce a general class of models, for which the charge relaxation resistance is universal. Our results emphasize that the charge relaxation resistance is a key observable to understand the dynamics of strongly correlated systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call