Abstract

We consider a quantum quench in which two initially independent condensates are suddenly coupled and study the subsequent "rephasing" dynamics. For weak tunneling couplings, the time evolution of physical observables is predicted to follow universal scaling laws, connecting the short-time dynamics to the long-time nonperturbative regime. We first present a two-mode model valid in two and three dimensions and then move to one dimension, where the problem is described by a gapped sine-Gordon theory. Combining analytical and numerical methods, we compute universal time-dependent expectation values, allowing a quantitative comparison with future experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.