Abstract

All-solid-state alkali ion batteries represent a future trend in battery technology, as well as provide an opportunity for low-cost metal fluoride electrode materials, if certain intrinsic problems can be resolved. In this work, a liquid metal activation strategy is proposed in which liquid Ga elements are generated in situ and doped into the LiF crystal structure by introducing a small amount of GaF3 . Benefiting from these two Ga states of existence, in which the liquid metal Ga can continuously maintain conformable ion/electron-transport networks, while doped Ga in the LiF crystal structure catalyzes LiF splitting, the lithium-ion storage capacity of MnF2 significantly increasesby 87%. A similar effect can be obtained in FeF3 , where the sodium-ion storage capacity is enhanced by 33%. This universal strategy with few restrictions can be used to realize a complete renaissance of metal fluorides, as well as offer an opportunity for the new application of liquid metals in the field of energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call