Abstract

Quantum computing may provide potential superiority to solve some difficult problems. We propose a scheme for scalable remote quantum computation based on an interface between the photon and the spin of an electron confined in a quantum dot embedded in a microcavity. By successively interacting auxiliary photon pulses with spins charged in optical cavities, a prototypical quantum controlled–controlled flip gate (Toffoli gate) is achieved on a remote three-spin system using only one Einstein–Podolsky–Rosen entanglement, and local operations and classical communication. Our proposed model is shown to be robust to practical noise and experimental imperfections in current cavity–quantum electrodynamics techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.