Abstract

Starting from a momentum space analysis of the two-body matrix elements, a relation has been established between the size of the model space actually used in a specific calculation and the relevant properties of the effective residual interaction. It turns out that the two-body transition density acts like a filter function on the Fourier transform of the force; it exhibits a distinct structure which clearly reflects the size and the detailed properties of the configuration space actually used. From an investigation of this filter function an equivalence criterion for different effective residual two-body interactions has been established both for closed and open shell nuclei. This result can be used to construct simple although realistic effective forces. As an example, a model for a separable residual interaction is proposed in which the corresponding parameters are being clearly related to the nuclear radius (i.e., the mass number), to the quantum numbers (i.e., the angular momentum) of the state under consideration and to the size of the configuration space used. For a number of examples this force has been applied successfully for the description of low energy properties of both closed and open shell nuclei. (AIP)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.