Abstract

We focus on solitary waves generated in arrays of lightly contacting spherical elastic granules by shock forces of steep rise and slow decay durations and establish a priori: (i) whether the peak value of the resulting solitary wave would be greater than, equal to, or less than the peak value of the input shock force; (ii) the magnitude of the peak value of the solitary waves; (iii) the magnitude of the linear momentum in each solitary wave; (iv) the magnitude of the linear momentum added to the remaining granules if the first granule is ejected; and (v) a quantitative estimate of the effect of the granules' radius, density, and stiffness on force amplification or mitigation. We have supported the analytical results by direct numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call