Abstract

We consider binary orthogonal signaling over a nonselective Rician-fading channel with additive white Gaussian noise. The received signal over such a channel may have both a specular component and a scatter (Rayleigh-faded) component. If there is only a scatter component, the noncoherent receiver is optimal. If there is only a specular component, the optimal receiver is the coherent receiver. In general, the optimal receiver for a Rician channel depends on the strengths of the two signal components and the noise density, and the set of possible optimal receivers is infinite. We consider a system in which the noncoherent receiver and the coherent receiver are employed in a parallel configuration for a symbol-by-symbol demodulation of the received signal. Each sequence of transmitted symbols produces a sequence at the output of each of the parallel receivers. The task of identifying which of these received sequences is a more reliable reproduction of the transmitted sequence is the data verification problem. In this paper, we show that data verification can be accomplished by combining side information from the demodulators with a suitable error-control coding scheme. The resulting system is a universal receiver that provides good performance over the entire range of channel parameters. In particular, the universal receiver performs better than the traditional noncoherent receiver.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call