Abstract
Based on the statistical concept of the median, we propose a quantum uncertainty relation between semi-interquartile ranges of the position and momentum distributions of arbitrary quantum states. The relation is universal, unlike that based on the mean and standard deviation, as the latter may become non-existent or ineffective in certain cases. We show that the median-based one is not saturated for Gaussian distributions in position. Instead, the Cauchy-Lorentz distributions in position turn out to be the one with the minimal uncertainty, among the states inspected, implying that the minimum-uncertainty state is not unique but depends on the measure of spread used. Even the ordering of the states with respect to the distance from the minimum uncertainty state is altered by a change in the measure. We invoke the completeness of Hermite polynomials in the space of all quantum states to probe the median-based relation. The results have potential applications in a variety of studies including those on the quantum-to-classical boundary and on quantum cryptography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.