Abstract

Based on a microwave-photon quantum processor with two superconducting resonators coupled to one transmon qutrit, we construct the controlled-phase (c-phase) gate on microwave-photon-resonator qudits, by combination of the photon-number-dependent frequency-shift effect on the transmon qutrit by the first resonator and the resonant operation between the qutrit and the second resonator. This distinct feature provides us a useful way to achieve the c-phase gate on the two resonator qudits with a higher fidelity and a shorter operation time, compared with the previous proposals. The fidelity of our c-phase gate can reach $99.51%$ within 93 ns. Moreover, our device can be extended easily to construct the three-qudit gates on three resonator qudits, far different from the existing proposals. Our controlled-controlled-phase gate on three resonator qudits is accomplished with the assistance of a transmon qutrit and its fidelity can reach $92.92%$ within 124.64 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.