Abstract
We study the prethermal dynamics of the Gross-Neveu-Yukawa quantum field theory, suddenly quenched in the vicinity of a critical point. We find that the universal prethermal dynamics is controlled by two fixed points depending on the size of the quench. Besides the usual equilibrium chiral Ising fixed point for a shallow quench, a dynamical chiral Ising fixed point is identified for a deep quench. Intriguingly, the latter is a nonthermal fixed point without any equilibrium counterpart due to the participation of gapless fermionic fields. We also find that in the scaling regime controlled by the equilibrium fixed point, the initial slip exponent is rendered negative if there are enough flavors of fermions, thus providing a unique signature of fermionic prethermal dynamics. We then explore the temporal crossover between the universal scaling regimes governed by the two universality classes. Possible experimental realizations are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.