Abstract
We present a sequential investment algorithm, the /spl mu/-weighted universal portfolio with side information, which achieves, to first order in the exponent, the same wealth as the best side-information dependent investment strategy (the best state-constant rebalanced portfolio) determined in hindsight from observed market and side-information outcomes. This is an individual sequence result which shows the difference between the exponential growth wealth of the best state-constant rebalanced portfolio and the universal portfolio with side information is uniformly less than (d/(2n))log (n+1)+(k/n)log 2 for every stock market and side-information sequence and for all time n. Here d=k(m-1) is the number of degrees of freedom in the state-constant rebalanced portfolio with k states of side information and m stocks. The proof of this result establishes a close connection between universal investment and universal data compression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.