Abstract

In this article the universal Poisson enveloping algebra for a binary-Lie algebra is constructed. Taking a basis 𝔹 of a binary-Lie algebra B, we consider the symmetric algebra S(B) of polynomials in the elements of 𝔹. We consider two products in S(B), the usual product of polynomials fg and the braces {f, g}, defined by the product in B and the Leibniz rule. This algebra is a general Poisson algebra. We find an ideal I of S(B) such that the factor algebra S(B)/I is the universal Poisson envelope of B. We provide some examples of this construction for known binary-Lie algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.