Abstract
Relaxation processes are crucial for understanding the structural rearrangements of liquids and amorphous materials. However, the overarching principle that governs these processes across vastly different materials remains an open question. Substantial analysis has been carried out based on the motions of individual particles. Here, as an alternative, we propose viewing the global configuration as a single entity. We introduce a global order parameter, namely the inherent structure minimal displacement (IS Dmin), to quantify the variability of configurations by a pattern-matching technique. Through atomic simulations of seven model glass-forming liquids, we unify the influences of temperature, pressure and perturbation time on the relaxation dissipation, via a scaling law between the mechanical damping factor and IS Dmin. Fundamentally, this scaling reflects the curvature of the local potential energy landscape. Our findings uncover a universal origin of glassy relaxation and offer an alternative approach to studying disordered systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.