Abstract

Network representation aims to represent the nodes in a network as continuous and compact vectors, and has attracted much attention in recent years due to its ability to capture complex structure relationships inside networks. However, existing network representation methods are commonly designed for homogeneous information networks where all the nodes (entities) of a network are of the same type, e.g., papers in a citation network. In this paper, we propose a universal network representation approach (UNRA), that represents different types of nodes in heterogeneous information networks in a continuous and common vector space. The UNRA is built on our latest mutually updated neural language module, which simultaneously captures inter-relationship among homogeneous nodes and node-content correlation. Relationships between different types of nodes are also assembled and learned in a unified framework. Experiments validate that the UNRA achieves outstanding performance, compared to six other state-of-the-art algorithms, in node representation, node classification, and network visualization. In node classification, the UNRA achieves a 3% to 132% performance improvement in terms of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.