Abstract

We study the set of probability distributions visited by a continuous-time quantum walk on graphs. An edge-weighted graph $G$ is {\em universal mixing} if the instantaneous or average probability distribution of the quantum walk on $G$ ranges over all probability distributions on the vertices as the weights are varied over non-negative reals. The graph is {\em uniform} mixing if it visits the uniform distribution. Our results include the following: 1) All weighted complete multipartite graphs are instantaneous universal mixing. This is in contrast to the fact that no {\em unweighted} complete multipartite graphs are uniform mixing (except for the four-cycle $K_{2,2}$). 2) For all $n \ge 1$, the weighted claw $K_{1,n}$ is a minimally connected instantaneous universal mixing graph. In fact, as a corollary, the unweighted $K_{1,n}$ is instantaneous uniform mixing. This adds a new family of uniform mixing graphs to a list that so far contains only the hypercubes. 3) Any weighted graph is average almost-uniform mixing unless its spectral type is sublinear in the size of the graph. This provides a nearly tight characterization for average uniform mixing on circulant graphs. 4) No weighted graphs are average universal mixing. This shows that weights do not help to achieve average universal mixing, unlike the instantaneous case. Our proofs exploit the spectra of the underlying weighted graphs and path collapsing arguments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call