Abstract

The goal of a denoising algorithm is to recover a signal from its noise-corrupted observations. Perfect recovery is seldom possible and performance is measured under a given single-letter fidelity criterion. For discrete signals corrupted by a known discrete memoryless channel (DMC), the Discrete Universal DEnoiser (DUDE) was recently shown to perform this task asymptotically optimally, without knowledge of the statistical properties of the source. In the present work, we address the scenario where, in addition to the lack of knowledge of the source statistics, there is also uncertainty in the channel characteristics. We propose a family of discrete denoisers and establish their asymptotic optimality under a minimax performance criterion which we argue is appropriate for this setting. As we show elsewhere, the proposed schemes can also be implemented computationally efficiently

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.