Abstract

As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans.

Highlights

  • As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication

  • We developed an experimental paradigm that allows imaging of syringeal dynamics under controlled conditions ex vivo (Methods section; Supplementary Fig. 1)

  • To test our first hypothesis, if the MEAD physical mechanism of self-sustained oscillations is applicable to birds (Fig. 1a), we took advantage of the diversity in syringeal morphology across species and first studied the domestic pigeon syrinx (Fig. 1b) because of its relatively simple

Read more

Summary

Introduction

Their vocal organ transforms motor commands into vocalizations for social communication. Isolated aspects of syringeal dynamics have been studied in birds[5,6,31,32,33,34,35], the asymmetric forcing function essential to maintain self-sustained oscillation has not yet been identified, and the caudo-cranial tissue-wave component VC2—a crucial underlying assumption in modelling studies7,9,36—has not been demonstrated experimentally in the intact syrinx under appropriate physiological conditions[16]. It is unknown how syringeal dynamics relate to sound generating events within a single oscillatory cycle. These essential features of syringeal dynamics required to confirm MEAD have yet to be established[16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.