Abstract
Soft glassy materials experience a significant reduction in viscosity η when subjected to shear flow, known as shear thinning. This phenomenon is characterized by a power-law scaling of η with the shear rate γ°\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\dot{\\gamma }$$\\end{document}, η∝γ°−ν\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\eta \\propto {\\dot{\\gamma }}^{-\ u }$$\\end{document}, where the exponent ν is typically around 0.7 to 0.8 across different materials. Two decades ago, the mode-coupling theory (MCT) suggested that shear thinning occurs due to the advection. However, it predicts too large ν = 1 ( > 0.7 to 0.8) and overestimates the onset shear rate by orders of magnitude. Recently, it was claimed that a minute distortion of the particle configuration is responsible for shear thinning. Here we extend the MCT to include the distortion, and find that both advection and distortion contribute to shear thinning, but the latter is dominant. Our formulation works quantitatively for several different glass formers. We explain why shear thinning is universal for many glassy materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.