Abstract

We consider the problem of representing a finite-energy signal with a finite number of samples. When the signal is interpolated via sinc function from the samples, there will be a certain reconstruction error since only a finite number of samples are used. Without making any additional assumptions, we derive a lower bound for this error. This error bound depends on the number of samples but nothing else, and is thus represented as a universal curve of error versus number of samples. Furthermore, the existence of a function that achieves the bound shows that this is the tightest such bound possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.