Abstract
This article presents a materials optimization for the universal jamming gripper, one of the most versatile tools for robotic grasping. For this purpose, we analyze both the granular interior material and its surrounding deformable envelope. We combine four different granulate sizes (glass balls ranging from 0.2 to 1 mm) with four envelope materials (three silicones and latex), resulting in 16 prototype combinations. We use a tensile test machine to recreate the robot’s vertical movement in a real scenario situation. Thus, we can have precise control of the gripper’s immersion depth, forces, and displacements. Thanks to the tensile test, we extract the critical parameters to evaluate every material combination and the gripper’s performance. Therefore, we provide an experimental guide to selecting the right materials and rule out bad combinations for soft robots and specifically for the universal jamming gripper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.