Abstract
Surface modification on the inner wall of medical or industrial polymeric catheters with a high length/diameter ratio is highly desired. Herein, a universal and facile method based on an amphiphilic copolymer was developed to immobilize an intraductal surface antifouling coating for a variety of polymeric catheters. A fouling-repelled thin layer was formed by swelling-driven adsorption via directly perfusing an amphiphilic copolymer [polyvinylpyrrolidone-polydimethylsiloxane-polyvinylpyrrolidone (PVP-PDMS-PVP)] solution into catheters. In this copolymer, hydrophobic PDMS was embedded into a shrinking cross-linked network of catheters; also, PVP segments migrated to the surface under driving water to form a hydrophilic antifouling coating. Moreover, because of the coordination between I2 and pyrrolidone of PVP, the copolymer-modified intraductal surface was then infused with aqueous I2 to form the PVP-I2 complex, endowing this coating with bactericidal activity. Notably, diverse catheters with arbitrary shapes (circular, rectangular, triangular, and hexagonal) and different components (silicone, polyurethane, and polyethylene) were also verified to work using this interfacial interpenetration strategy. The findings in this work provide a new avenue toward facile and universal fabrication of intraductal surface antifouling catheters, creating a superior option for decreasing the consumable costs in industrial production and alleviating the pain of replacing catheters for patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.