Abstract

Optical clock interrogation protocols, based on laser-pulse spectroscopy, suffer from probe-induced frequency shifts and their variations induced by laser power. The original hyper-Ramsey probing scheme, which was proposed to alleviate those issues, does not fully eliminate the shift, especially when decoherence and relaxation by spontaneous emission or collisions are present. We propose to solve the fundamental problem of frequency shifts induced by the laser probe by deriving the exact canonical form of a multipulse generalized hyper-Ramsey resonance, including decoherence and relaxation. We present a universal interrogation protocol based on composite laser-pulse spectroscopy with phase modulation eliminating probe-induced frequency shifts at all orders in the presence of various dissipative processes. Unlike frequency shift extrapolation based methods, a universal interrogation protocol based on $\ifmmode\pm\else\textpm\fi{}\ensuremath{\pi}/4$ and $\ifmmode\pm\else\textpm\fi{}3\ensuremath{\pi}/4$ phase-modulated resonances is proposed which does not compromise the stability of the optical clock while maintaining an ultrarobust error signal gradient in the presence of substantial uncompensated ac Stark shifts. Such a scheme can be implemented in two flavors: either by inverting clock state initialization or by pulse order reversal even without a perfect quantum state initialization. This universal interrogation protocol can be applied to atomic, molecular, and nuclear frequency metrology, mass spectrometry, and the field of precision spectroscopy. It might be designed using magic-wave-induced transitions, two-photon excitation, and magnetically induced spectroscopy or it might even be implemented with quantum logic gate circuit and qubit entanglement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.