Abstract

The employment of self-assembly of soft materials has been accepted as an inexpensive, robust, and reliable patterning method. As their self-assembly relies on the delicate molecular interactions near the substrate, a precise prediction/control of the interface structure and dynamics is critical to achieve desired nanostructures. Herein, a polymeric nanomosaic (PNM) pattern is created from the air/water interfacial self-assembly of a block copolymer (BCP) and introduced as an effective interfacial energy control for substrates. As a demonstration, the PNM coating is employed to control the BCP film structures. The perpendicular orientation of BCP self-assembly, which requires neutral wetting conditions for both blocks, is difficult to achieve but can readily be obtained with the PNM coating upon a fine resolution of the pattern quality. The universal applicability of the PNM coating as an interfacial control has been confirmed on curved, flexible, and three-dimensional substrates. In addition, the PNM is introduced as an etching-free and reusable topcoat imparting free surface neutralization even for the high-χ BCP nanopatterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.