Abstract

We establish inequalities for the eigenvalues of Schrödinger operators on compact submanifolds (possibly with nonempty boundary) of Euclidean spaces, of spheres, and of real, complex and quaternionic projective spaces, which are related to inequalities for the Laplacian on Euclidean domains due to Payne, Pólya, and Weinberger and to Yang, but which depend in an explicit way on the mean curvature. In later sections, we prove similar results for Schrödinger operators on homogeneous Riemannian spaces and, more generally, on any Riemannian manifold that admits an eigenmap into a sphere, as well as for the Kohn Laplacian on subdomains of the Heisenberg group. Among the consequences of this analysis are an extension of Reilly’s inequality, bounding any eigenvalue of the Laplacian in terms of the mean curvature, and spectral criteria for the immersibility of manifolds in homogeneous spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.