Abstract

In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409–416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some special functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.