Abstract
Light is reflected at the interface between heterogeneous media due to the mismatch of impedance1–3. Removing this mismatch using additional materials, a technique known as anti-reflection, has so far been restricted to specific frequencies and incidence angles3–7. The anti-reflection of white light, which requires the simultaneous matching of impedance over extremely wide angular and spectral ranges, has until now been considered impossible. Here, we develop a theory of universal impedance matching and introduce a matching layer that enables the perfect transmission of white light. The ability of a matching layer to assist in omnidirectional and frequency-independent anti-reflection has been confirmed analytically and numerically. We explain the feasibility of a universal matching layer using metamaterials, and demonstrate a transmission rate of over 99% for white light in the visible range with a double-layered dielectric metamaterial. This is confirmed experimentally by demonstrating the omnidirectional anti-reflection of microwaves in heterogeneous media. An impedance matching layer that enables perfect transmission of all-angle, broadband white light is proposed. The concept is experimentally demonstrated in the microwave regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.