Abstract

Using discrete and continuous variable subsystems, hybrid approaches to quantum information could enable more quantum computational power for the same physical resources. Here, we propose a hybrid scheme that can be used to generate the necessary Gaussian and non-Gaussian operations for universal continuous variable quantum computing in trapped ions. This scheme utilizes two linear spin-motion interactions to generate a broad set of nonlinear effective spin-motion interactions including one- and two-mode squeezing, beam splitter, and trisqueezing operations in trapped ion systems. We discuss possible experimental implementations using laser-based and laser-free approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call