Abstract
A universal mechanism for the generation of statistical self-similarity-i.e., fractality in the context of random processes-is established. We consider a generic system which superimposes independent stochastic signals, producing a system output; all signals share a common statistical signal pattern, yet each signal has its own transmission parameters-amplitude, frequency, and initiation epoch. We characterize the class of parameter randomizations yielding statistically self-similar outputs in a universal fashion-i.e., for whatever signals fed into the system. Statistically self-similar outputs with finite variance further display (i) anomalous diffusion behavior-characterized by power-law temporal variance growth-and (ii) 1/f noise behavior-characterized by power-law power spectra. The mechanism presented is a "randomized central limit theorem" for fractal statistics of random processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.