Abstract

We define and study XOR games in the framework of general probabilistic theories, which encompasses all physical models whose predictive power obeys minimal requirements. The bias of an XOR game under local or global strategies is shown to be given by a certain injective or projective tensor norm, respectively. The intrinsic (i.e. model-independent) advantage of global over local strategies is thus connected to a universal function r(n, m) called ‘projective–injective ratio’. This is defined as the minimal constant rho such that Vert cdot Vert _{Xotimes _pi Y}leqslant rho ,Vert cdot Vert _{Xotimes _varepsilon Y} holds for all Banach spaces of dimensions dim X=n and dim Y=m, where Xotimes _pi Y and X otimes _varepsilon Y are the projective and injective tensor products. By requiring that X=Y, one obtains a symmetrised version of the above ratio, denoted by r_s(n). We prove that r(n,m)geqslant 19/18 for all n,mgeqslant 2, implying that injective and projective tensor products are never isometric. We then study the asymptotic behaviour of r(n, m) and r_s(n), showing that, up to log factors: r_s(n) is of the order sqrt{n} (which is sharp); r(n, n) is at least of the order n^{1/6}; and r(n, m) grows at least as min {n,m}^{1/8}. These results constitute our main contribution to the theory of tensor norms. In our proof, a crucial role is played by an ‘ell _1/ell _2/ell _{infty } trichotomy theorem’ based on ideas by Pisier, Rudelson, Szarek, and Tomczak-Jaegermann. The main operational consequence we draw is that there is a universal gap between local and global strategies in general XOR games, and that this grows as a power of the minimal local dimension. In the quantum case, we are able to determine this gap up to universal constants. As a corollary, we obtain an improved bound on the scaling of the maximal quantum data hiding efficiency against local measurements.

Highlights

  • One of the most prominent conceptual contributions of the celebrated 1964 paper by Bell [1] is to point out that the implications of the quantum mechanical predictions extend far beyond the very same formalism that is used to deduce them, and shed light on some of the deepest secrets of Nature

  • In analogy with the classical case, we show that such winning probabilities are given by simple expressions involving respectively the projective and injective tensor norms induced by the local general probabilistic theories (GPTs) through their native Banach space structures

  • Throughout this section, we present our main results on the universal functions r (n, m) and rs(n) introduced in (16) and (17), respectively

Read more

Summary

Introduction

One of the most prominent conceptual contributions of the celebrated 1964 paper by Bell [1] is to point out that the implications of the quantum mechanical predictions extend far beyond the very same formalism that is used to deduce them, and shed light on some of the deepest secrets of Nature. Since the referee has no control over the experimental capabilities of the other two players, these are free to pick any A and B, subjected to the constraints dim VA = n and dim VB = m Once this choice has been made, it is communicated to the referee, who physically constructs A and B, combines them in a bipartite system AB that is a legitimate GPT but is elsewhere of their choice, selects an appropriate XOR game G over AB, and plays it with Alice and Bob. The goal of the referee is to make the global/local bias ratio of G as large as possible – ideally, one would aim for a global bias close to 1 and a local bias close to 0 – by suitably choosing the composite AB and the game G.

Main Results
Conclusions
C.12. Let z associated

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.