Abstract

For a general O(N) model, we study the time-dependent phase transition from a state with broken symmetry to the symmetric phase . During this non-equilibrium process, the primordial quantum (or thermal) fluctuations of the initial Goldstone modes are frozen and result in a deviation from the final ground (or thermal) state. For very slow transitions, we find that these fluctuations display a universal scaling behaviour. Their spectra are universal functions of a single parameter, which combines the initial frequency of the Goldstone modes and the sweep rate. As a result, the final two-point function is not exponentially suppressed at large distances Δr = r − r′ (as it would be in the ground state) but decays polynomially in 1/|Δr|. Finally, we exemplify this universal behaviour for the transition from the super-fluid phase to the Mott state in the Bose–Hubbard model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call