Abstract

In a view of recent proposals for the realization of anisotropic light-matter interaction in such platforms as (i) non-stationary or inductively and capacitively coupled superconducting qubits, (ii) atoms in crossed fields and (iii) semiconductor heterostructures with spin-orbital interaction, the concept of generalized Dicke model, where coupling strengths of rotating wave and counter-rotating wave terms are unequal, has attracted great interest. For this model, we study photon fluctuations in the critical region of normal-to-superradiant phase transition when both the temperatures and numbers of two-level systems are finite. In this case, the superradiant quantum phase transition is changed to a fluctuational region in the phase diagram that reveals two types of critical behaviors. These are regimes of Dicke model (with discrete $\mathbb{Z}_2$ symmetry), and that of (anti-) and Tavis-Cummings $U(1)$ models. We show that squeezing parameters of photon condensate in these regimes show distinct temperature scalings. Besides, relative fluctuations of photon number take universal values. We also find a temperature scales below which one approaches zero-temperature quantum phase transition where quantum fluctuations dominate. Our effective theory is provided by a non-Goldstone functional for condensate mode and by Majorana representation of Pauli operators. We also discuss Bethe ansatz solution for integrable $U(1)$ limits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call