Abstract

Every conic symplectic singularity admits a universal Poisson deformation and a universal filtered quantization, thanks to the work of Losev and Namikawa. We begin this paper by showing that every such variety admits a universal equivariant Poisson deformation and a universal equivariant quantization with respect to a reductive group acting on it by \mathbb{C}^\times -equivariant Poisson automorphisms. We go on to study these definitions in the context of nilpotent Slodowy slices. First, we give a complete description of the cases in which the finite W -algebra is a universal filtered quantization of the slice, building on the work of Lehn–Namikawa–Sorger. This leads to a near-complete classification of the filtered quantizations of nilpotent Slodowy slices. The subregular slices in non-simply laced Lie algebras are especially interesting: with some minor restrictions on Dynkin type, we prove that the finite W -algebra is a universal equivariant quantization with respect to the Dynkin automorphisms coming from the unfolding of the Dynkin diagram. This can be seen as a non-commutative analogue of Slodowy's theorem. Finally, we apply this result to give a presentation of the subregular finite W -algebra of type \mathsf{B} as a quotient of a shifted Yangian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.