Abstract

Recent experimental [I. Jo et al., Phys. Rev. Lett. 119, 016402 (2017)] and numerical [M. Ippoliti, S. D. Geraedts, R. N. Bhatt, Phys. Rev. B 95, 201104 (2017)] evidence suggests an intriguing universal relationship between the Fermi surface anisotropy of the noninteracting parent 2-dimensional (2D) electron gas and the strongly correlated composite Fermi liquid formed in a strong magnetic field close to half-filling. Inspired by these observations, we explore more generally the question of anisotropy renormalization in interacting 2D Fermi systems. Using a recently developed [H. -K. Tang et al., Science 361, 570 (2018)] nonperturbative and numerically exact projective quantum Monte Carlo simulation as well as other numerical and analytic techniques, only for Dirac fermions with long-range Coulomb interactions do we find a universal square-root decrease of the Fermi-surface anisotropy. For the [Formula: see text] composite Fermi liquid, this result is surprising since a Dirac fermion ground state was only recently proposed as an alternative to the usual Halperin-Lee-Read state. Our proposed universality can be tested in several anisotropic Dirac materials including graphene, topological insulators, organic conductors, and magic-angle twisted bilayer graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call