Abstract

We present simulation results from a comprehensive molecular dynamics (MD) study of surface-directed spinodal decomposition (SDSD) in unstable symmetric binary mixtures at wetting surfaces. We consider long-ranged and short-ranged surface fields to investigate the early stage wetting kinetics. The attractive part of the long-ranged potential is of the form V(z)∼z^{-n}, where z is the distance from the surface and n is the power-law exponent. We find that the wetting-layer thickness R_{1}(t) at very early times exhibits a power-law growth with an exponent α=1/(n+2). It then crosses over to a universal fast-mode regime with α=3/2. In contrast, for the short-ranged surface potential, a logarithmic behavior in R_{1}(t) is observed at initial times. Remarkably, similar rapid growth is seen in this case too. We provide phenomenological arguments to understand these growth laws. Our MD results firmly establish the existence of universal fast-mode kinetics and settle the related controversy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.