Abstract

A simple illustrative wave function with only three variational parameters is suggested to calculate the binding energy of negatively charged excitons (X-) as a function of quantum well width. The results of calculations are in agreement with experimental data for GaAs, CdTe and ZnSe quantum wells, which differ considerably in exciton and trion binding energy. The normalized X- binding energy is found to be nearly independent of electron-to-hole mass ratio for any quantum well heterostructure with conventional parameters. Its dependence on quantum well width follows an universal curve. The curve is described by a simple phenomenological equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.