Abstract
We prove that for an arbitrary time-homogeneous stochastic process, Kramers's flux-over-population rate is identical to the inverse of the associated mean first-passage time. In this way the mean first-passage time problem can be treated without making use of the adjoint equation in conjunction with cumbersome boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.