Abstract

We show that the ordinary differential equations (ODEs) of any deterministic autonomous dynamical system with continuous and bounded rate-field components can be embedded into a quadratic Lotka-Volterra-like form by turning to an augmented set of state variables. The key step consists in expressing the rate equations by employing the Universal Approximation procedure (borrowed from the machine learning context) with logistic sigmoid ‘activation function’. Then, by applying already established methods, the resulting ODEs are first converted into a multivariate polynomial form (also known as generalized Lotka-Volterra), and finally into the quadratic structure. Although the final system of ODEs has a dimension virtually infinite, the feasibility of such a universal embedding opens to speculations and calls for an interpretation at the physical level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.