Abstract
The crystal structures of A(2)BO(4) spinel oxides are classified as either normal or inverse, representing different distributions of the A and B cations over the tetrahedrally and octahedrally coordinated cation sites. These structures undergo characteristic structural changes as a function of temperature: (i) the nominally disordered inverse structure orders crystallographically at low T, and (ii) at finite temperatures, both inverse and normal develop characteristic distributions of cations associated with order-disorder structural changes. We show here that all of these universal features emerge naturally from a simple point-ion electrostatic (PIE) model with a single adjustable parameter. Monte Carlo simulations of the PIE Hamiltonian provide quantitative order-disorder characteristic temperatures. We show that, with the help of the PIE model, the magnitude of the temperatures can be inferred from the nominal charges of the atomic species in the spinel. Indeed, we show that characteristic order-disorder temperatures in 3-2 spinels (nominal charges Z(A) = 3 and Z(B) = 2) are approximately an order of magnitude lower than in 2-4 spinels, thus explaining why typical 3-2 samples exhibit much larger degrees of disorder than those belonging to the 2-4 class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.